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Abstract

Circular cylindrical shells are frequently used as structural components because of their high strength and
their ability to absorb energy during complete structural collapse[ Total collapse analyses have mainly been
based on experimental work and approaches inspired by this[ However\ in the last few years\ powerful
numerical tools have been available and numerical collapse analyses have become more attractive[ This
paper presents results from an axisymmetric numerical collapse analysis[ The analysis is based on a _nite
rotation shell theory accounting for contact between the shell walls[ The strains are assumed to remain small
and the shell material is described by an elasticÐviscoplastic model[ The sensitivity of the collapse behaviour
is demonstrated with respect to parameters such as initial imperfections\ thickness of the shell\ material
parameters and rate of deformation[ Comparisons between the results numerically obtained and approaches
found in the literature are presented[ Good agreement was found for the folding length of the developed
collapse pattern whereas small di}erences between the mean crushing loads was observed[ Furthermore\ it
was noted that the developed collapse pattern was strongly dependent on the strain hardening of the material[
Þ 0887 Elsevier Science Ltd[ All rights reserved[

Notation

List of the most important symbols[ The number in brackets refers to the equation where the
variable was de_ned or _rst introduced[

"=# time derivative
"¦# increment "¦# �" ¾ #Dt
"># undeformed state "Section 2#
" # =a covariant di}erentiation "09#
"*# variables to the time t¦Dt "A[0#
Lijkl elastic moduli "5#

� Fax ] 330112221551[
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lc critical half!wave length "time!independent bifurcation analysis# "13#
li length of the undeformed middle surface for one half wave
lf average length of the undeformed middle surface for one half fold
l Al

f half folding length found by Alexander "0859# "14#
l AJ

f half folding length found by Abramowicz and Jones "0873# "15#
l SER

f half folding length found by Singace\ Elsobky and Reddy "0884# "16#
E Young|s modulus "2#
F middle surface "Section 2#
L length of the shell
Ld axial length of one fully developed fold
Mab moment tensor "03#
Nab membrane strain tensor "03#
R radius of the shell
ai base vectors
aab\ a metric tensor of the middle surface of the shell and its determinant
bab curvature tensor of the middle surface of the shell
`ij metric tensor
h thickness of the shell "03#
m rate!hardening exponent "1#
n strain hardening exponent "2#
r smallest radius of curvature of the deformed shell
sij stress deviator "1#
v\ vi displacement vector and its components "00#
w di}erence vector "01#

Greek symbols
DL shortening of the shell
Dt time increment
aab membrane strain tensor "7#
b degree of localisation "13#
j¹ imperfection amplitude "13#
d7

a Kronecker|s delta
o¾9 positive reference strain rate "1#
o¾L average shortening strain rate
oP

e e}ective plastic strain "1#
h¾ ij total strain rate
h¾ E

ij\ h¾ P
ij elastic and plastic part of strain rate

l instantaneous load carrying capacity
l9 load parameter l9 � 1phRs9

lcp load parameter lcp � 1phRscp

lm mean load carrying capacity in the near periodic region
lAl

m mean carrying capacity found by Alexander "0859# "14#
lAJ

m mean carrying capacity found by Abramowicz and Jones "0873# "15#
lSER

m mean carrying capacity found by Singace et al[ "0884# "16#
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lmax maximum load peak
Ui convected coordinate system
n Poisson|s ratio "5#
s9 reference stress "2#
scp average axisymmetric plastic bifurcation stress
se e}ective von Mises stress "1#
fai deformation gradients "09#
vab bending strain tensor "8#

0[ Introduction

Buckling and initial post!buckling behaviour of circular cylindrical shells under axial com!
pression has been the subject of intensive work for many years\ experimentally as well as numeri!
cally[ This is mainly due to the fact that the load carrying capacity of cylindrical shells is high\ but
very imperfection!sensitive[ The use of thin shells as structural components is thus advantageous
in places where a high strength to weight ratio is required[ However\ it requires extensive knowledge
about imperfections[ Areas in which thin!walled shell structures can be used to advantage are the
automotive\ aircraft and o}shore industry[ Both the load carrying capacity of the shell structure
and the ability to absorb energy during complete structural collapse are of interest[ Low peak
loads and high energy absorption during total collapse are often the criteria used in estimating the
crashworthiness of a shell structure[ Contrary to a buckling and initial post!buckling analysis
"Tvergaard\ 0872a\ b ^ Mikkelsen\ 0884#\ a total collapse analysis requires a _nite rotation shell
theory that can account for contact between the shell walls[ Due to the complexity of crushing
problems\ collapse analyses have mainly been based on experimental results "Batterman\ 0854 ^
Horton et al[\ 0855 ^ Andrews et al[\ 0872 ^ Singace and Elsobky\ 0885 ^ Allan\ 0857# and approaches
inspired thereby "Alexander\ 0859 ^ Abramowicz and Jones\ 0873 ^ Grzebieta\ 0889 ^ Wierzbicki\ et
al[\ 0881 ^ Gupta and Velmurugan\ 0884 ^ Singace et al[\ 0884#[ With faster and larger computers\
numerical analyses have become more attractive "Berstad et al[\ 0884# because full!scale collapse
testing is costly and time consuming and the analytical approaches have limited value[ Experimental
measurements "Krempl and Kallianpur\ 0873# show that even at a low strain rate\ the inelastic
behaviour of metals tends to be viscoplastic because the ~ow stress is dependent on the strain rate[
This may have an important in~uence on the value of the peak load carried in the early stage of
buckling and on the energy absorption during post!buckling of cylindrical shells "Mikkelsen\
0882#[

For the time!independent case\ a circular cylindrical shell compressed into the plastic region will
bifurcate into _rst an axisymmetric mode and then\ for su.ciently thin!walled shells\ into a non!
axisymmetric buckling mode\ as has been shown by Tvergaard "0872a\ b#[ These modes are initially
periodic but will\ after the maximum load carrying capacity of the shells is reached\ localise into
one buckle with a resulting rapid drop in the carrying capacity of the shell[ If the non!axisymmetric
bifurcation point _rst appears well beyond the maximum load point\ such that the axisymmetric
buckle has grown su.ciently large\ the non!axisymmetric part will not be signi_cant in the _nal
buckling mode[ Thus\ the _nal collapse mode will be purely axisymmetric[ It has been shown by
Tvergaard "0872b# that the delay of the non!axisymmetric bifurcation point depends mainly on



L[P[ Mikkelsen : International Journal of Solids and Structures 25 "0888# 532Ð557535

the radius to thickness ratio of the shell and on the yield stress and strain hardening of the shell
materials[

In the time!dependent viscoplastic case\ the inelastic bifurcation point vanishes "Obrecht\ 0866#[
The inelastic buckling behaviour is now governed by a strong sensitivity to small initial imper!
fections "Tvergaard\ 0874#[ This sensitivity results in a behaviour very similar to that of the time!
independent plastic shell\ and the axisymmetric collapse form is also in the viscoplastic case
favoured by a smaller radius to thickness ratio\ a low reference stress and a low strain hardening
"Mikkelsen\ 0884#[ In the present axisymmetric analysis a preliminary assumption of a concertina
collapse mode is necessary[ Therefore\ in all the numerical results presented\ the material and
geometric parameters must be chosen such that an assumption of a pure concertina collapse mode
is reasonable[

The viscoplastic constitutive law "Tvergaard\ 0874 ^ Mikkelsen\ 0884# used in this paper coincides
with the J1!~ow theory in the time!independent limit[ The analysis is performed using an incremen!
tal _nite element method based on a _nite rotation shell theory "Basžar and Ding\ 0889#[ In
the analysis\ large rotations and contact between shell walls are taken into account[ The shell
deformations are assumed to satisfy small strain theory\ and the deformation rates are assumed
small enough for inertia e}ects as well as e}ects of temperature increase due to plastic dissipation
to be neglected[ Special attention is devoted to the dependence of the shape of the developed
axisymmetric collapse folds\ of the peak loads\ and of the energy absorption\ with respect to the
shell thickness and material parameters[ By introducing a large initial localised axisymmetric
imperfection "bulge# in the shell\ it is demonstrated how the load peak during the initial buckling
can be reduced signi_cantly\ while the energy absorption of the shell during total collapse remains
almost unchanged[

Most previous analyses of total collapse of shells "e[g[ Alexander\ 0859 ^ Abramowicz and Jones\
0873 ^ Singace et al[\ 0884# have been based on approximate methods using rigid!plastic upper
bound analysis[ An important di}erence from these investigations is that the present numerical
analysis is based on full nonlinear shell theory\ accounting for large rotations[ Comparisons with
predictions of some of the approximate grid!plastic models are given in Section 5[

1[ ElasticÐviscoplastic constitutive law

In the elasticÐviscoplastic model considered\ it is assumed that the condition for small strain
theory is satis_ed and that the material hardens isotropically[ The material model is identical to
the model used in e[g[ Tvergaard "0874#\ and Mikkelsen "0882\ 0884#\ and will only be presented
brie~y[ General tensor notation is used\ where upper and lower indices denote contravariant and
covariant tensors\ respectively\ and where the summation convention is adopted for repeated
indices[ Di}erentiation with respect to time is denoted " ¾ #\ while covariant di}erentiation is
denoted " # =i[ Latin indices range from one to three\ and Greek indices range from one to two[

The total strain rate h¾ ij is taken to be a sum of an elastic part h¾ E
ij and a viscoplastic part h¾ P

ij

h¾ ij � h¾ E
ij¦h¾ P

ij "0#

The elastic part is given by Hooke|s law\ while the viscoplastic part is modelled as
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h¾ P
ij � o¾P

e 0
2sij

1se1\ o¾P
e � o¾9 0

se

`"oP
e #1

0:m "1#

where the stress deviator is sij � sij−`ijsk
k:2\ the e}ective von Mises stress is se � z2sijsij:1\ `ij is

the metric tensor\ and o¾9 is the positive reference strain rate[ For a rate!hardening exponent m :
9\ the viscoplastic model coincides with the time!independent J1!~ow theory "Rice\ 0869#[ The
rate!hardening exponent m is usually small at room temperature "m ¼ 9[994Ð9[92 for most metals\
Hutchinson and Neale\ 0866#[

The function `"oP
e # represents the ~ow stress in a uniaxial tensile test performed at a strain rate

corresponding to o¾P
e � o¾9 and is modelled as

oP
e �

s9

E 6
0
n 0

`"oP
e #

s9 1n−
0
n

¦07−
`"oP

e #
E

\ `"9# � s9 "2#

where s9 is the reference stress\ n the strain hardening exponent\ and E Young|s modulus[
The constitutive law for the relevant in!plane stresses "approximating a plane stress state in the

shell# is given by

s¾ ab � L
 abgdh¾gd¦s¼¾ ab

� "3#

with

L
 abgd � Labgd−
Lab22L22gd

L2222
\ s¼¾ ab

� � s¾ ab

� −s¾ 22

�
Lab22

L2222
\ s¾ ij

� � −L ijklh¾ P
kl "4#

where the elastic moduli Lijkl are given by

L ijkl �
E

0¦n 6
0
1
"`ik`jl¦`il`jk#¦

n

0−1n
`ij`kl7 "5#

and n is Poisson|s ratio[
To allow for a larger step size in the numerical analysis\ a forward gradient method suggested

by Peirce et al[ "0873# is used[ The forward gradient method is based on a linear interpolation
between o¾P "t#

e and o¾P "t¦Dt#
e of the inelastic strain rate within the increment\

o¾P
e �"0−u#o¾P "t#

e ¦uo¾P "t¦Dt#
e \ where o¾P "t¦Dt#

e is found by a Tayler series expansion[ An interpolation
using u � 9[8 results in the largest stable step size[

2[ Finite rotation shell theory

The shell theory considered does not require any assumptions concerning the magnitude of the
displacement and rotation of the shell[ This theory is similar to the elastic shell theory of Basžar
"0876#\ from which the notation is adopted\ but in this paper the theory has been formulated for
elasticÐviscoplastic shells[ Points on the middle surface F are described by the position vector
r"Ua#\ where the convected curvilinear coordinates Ua measure the position on the middle surface[
Similarly\ U2 measures the distance from the middle surface in the direction of the base vector a2[
Bold!face characters denote vectors[ The middle surface of the shell is given by the metric tensor
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aab � aa = ab and the curvature tensor bab � −aa = a2\b\ where aa � r\a denotes the base vectors[
Elements associated with the undeformed state are denoted "># while su.x!free symbols refer to
the deformed state[ The undeformed state is chosen as the reference state[

The Kirchho}ÐLove assumption is adopted in the Lagrangian strain tensor "see Basžar and
Kra�tzig 0878\ 0889#

hab � aab¦U2vab "6#

where the membrane strain tensor aab and the bending strain tensor vab are given\ respectively\ by

aab � 0
1
"fba¦fab¦falf

l
b¦fa2fb2# "7#

and

vab � −ðfa2=b¦b� 7
bfa7¦w2"b�ab¦fa2=b¦b� 7

bfa7#¦w7"f7
a=b−b� 7

bfa2#Ł "8#

with the deformation gradients de_ned by

fab � vb=a−b�abv2\ fa2 � v2=a¦b� b
avb "09#

and the displacement vector given by

v � r−r� � vaa�¦v2a�
2 "00#

In view of the Kirchho}ÐLove assumption\ the three components of the di}erence vector can be
written as "Basžar and Kra�tzig\ 0878#

wa � −X
a�
a
"fa2¦fa2f

b
b−fb2f

b
a#

w2 �X
a�
a 00¦fa

a¦
0
1

dab
7lf

7
af

l
b1−0 "01#

where a� � a�00a�11−a�01a�10 and a � a00a11−a01a10 are the metric of the undeformed and the deformed
middle surface\ respectively[ The generalised Kronecker|s delta is given by dab

7l � da
7d

b
l−da

ld
b
7 \

where da
l is Kronecker|s delta[

The numerical results are found by a linear incremental method\ in which the non!linear shell
equations are written in an incremental form "Basžar and Ding\ 0889#[

gg
Fý

"N
¦

abda
¦

ab¦M
¦

abdv
¦

ab# dFý¦
0
1gg

Fý

"N abd a
¦¦

ab¦M abdva
¦¦

ab# dFý−gg
Fý

"P
¦

adv
¦

a¦P
¦

2dv
¦

2# dFý�d"DWy#

¦$dWy−gg
Fý

"N abda
¦

ab¦M abdv
¦

ab# dFý¦gg
Fý

"P adv
¦

a¦P 2dv
¦

2# dFý% "02#

where the bracketed term is introduced to avoid drifting of the numerical solution away from the
equilibrium path[ The increments are denoted "¦# �" ¾ #Dt\ where Dt is the time step[ The external
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virtual work is denoted dWy\ while the membrane strain tensor Nab and the moment tensor Mab

are de_ned by

N ab � g
h:1

−"h:1#

sab dU2\ M ab � g
h:1

−"h:1#

sabU2 dU2 "03#

where h is the thickness of the shell[ The contact forces "Pa\ P2# are speci_ed later in Section 3[ The
incremental variables\ including an explanation of the notation "¦¦#\ are given in Appendix A[ In
eqn "03# it is assumed that the radius R of the shell is large compared with h such that =0¦U2R= ¼ 0
"see Basžar and Kra�tzig\ 0889#[

If the rotation of the shell is small such that w � a2−a�2 ¼ 9\ the bending strain tensor reduces
to vab � −fa2=b−b� 7

bfa7 and the shell theory will therefore coincide with the moderate rotation
shell theory "Niordson\ 0874# used in e[g[ Mikkelsen "0884#[

3[ Contact formulation

A number of di}erent numerical procedures for treating contact problems have been developed
in the literature[ In the case of collapsing shell structures\ the main complexity is that some
unknown part of the shell will come into contact with some other part "see e[g[ Benson and
Hallquist\ 0889#[ Therefore\ the traditional approach of de_ning master and slave contact surfaces
is not possible[ On the other hand\ an accurate contact formulation is not essential for the collapse
behaviour[ The major component of energy is absorbed during collapse by deformation of the
shell walls[ The purpose of the contact formulation presented here is therefore only to prevent the
shell from penetrating itself while ensuring a stable numerical solution[ In the contact formulation\
a contact middle surface is used which di}ers slightly from the smooth curved middle surface of
the _nite element model "see Fig[ 0"a##[ The contact surface is de_ned by ~at elements connecting
the _nite element nodes[

Contact is obtained when the penetrating node S and the contact element AB "see Fig[ 0"b##
satisfy the conditions

d ³ h\ LA × 9\ LB × 9 "04#

where

d � =rAS = n=\ LA � rAS = rAB:LAB and LB � −rBS = rAB:LAB "05#

and the unit vector n is the normal to the contact element AB[ At contact\ the contact force on the
penetrating node S is evaluated as

F � KLS"h−d#an\ a � 6
0 for rAS = n × 9

−0 for rAS = n ³ 9
"06#

where LS is the average element length of the two elements containing node S[ The sti}ness K of
the contact spring is chosen as high as possible without destabilising the numerical solution[ The
reaction forces on the contact element "FA\ FB# are simply applied according to the lengths LA and
LB in Fig[ 0"b#\ such that
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Fig[ 0[ "a# Contact middle surface and middle surface for the _nite element method model[ "b# Contact forces between
a penetrating _nite element node S and the contact element AB[ "c# The three possibilities of contact of the penetrating
node "S\ T and U# and the contact surface[

FA � −FLB:LAB\ FB � −FLA:LAB "07#

The increment of the contact forces "F
¦
\ F

¦

A and F
¦

B# can now be evaluated from

F
¦

� −Kd
¦
an\ d

¦
� a"r

¦
AS = n¦rAS = n

¦
# "08#

where the increment of the vectors r
¦

AS and n
¦

is evaluated from its components\ which are given by
the increments of the displacements v

¦
0 and v

¦
2 at the nodes A\ B and S

r
¦

AS � 0
v
¦

0

v
¦

21S

−0
v
¦

0

v
¦

21A

and n
¦

�
0

LAB $0
−v

¦
2

v
¦

0 1B

−0
−v

¦
2

v
¦

0 1A% "19#

The disadvantages of using straight contact elements appear when the node S penetrates the
contact surface near a node "see Fig[ 0"c##[ Two cases must be treated separately[ When node T
penetrates two contact elements simultaneously or when node U moves between two contact
elements[ In the _rst case\ the contact forces are weighted with the factors L0:"L0¦L1# and
L1:"L0¦L1#\ respectively\ according to the lengths L0 and L1 in Fig[ 0"c#[ In the second case\ the
contact forces are found according to the distance d between the nodes A and U "see Fig[ 0"c##[
The contact forces are then given by
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F � KLS"h−d#m with m � rAU:=rAU = "10#

where the reaction force on A is FA � −F[ The corresponding increments are given by

F
¦

� −KLSd
¦
n with d

¦
� rAUr

¦
AU:=rAU = "11#

As no part of the shell can be treated as master or slave contact surface prior to the numerical
analysis\ all the _nite element nodes are treated as possible penetrating nodes[ Therefore\ in most
cases\ there will be contact both ways between the shell walls\ resulting in twice the number of
contact forces[

The contact forces between the shell walls are introduced into the principle of virtual work in
incremental form "02# by adopting

g g
Fý

"P
¦

adv
¦

a¦P
¦

2dv
¦

2# dFý� s
nodes

k�0

"F
¦

adv
¦

a¦F
¦

2dv
¦

2#

g g
Fý

"P adv
¦

a¦P 2dv
¦

2# dFý� s
nodes

k�0

"F adv
¦

a¦F 2dv
¦

2# "12#

Contact between the shell walls and an outer boundary "symmetry and clamped boundary
condition# depends on the penetration of the Gauss integration points into the outer boundary[
Therefore\ the integrals in "12# for the contact forces "P0\ P2# and their increments "P

¦
0\ P

¦
2# can be

evaluated directly[ The contact forces are\ as above\ modelled to be proportional to the penetration
depth[

4[ Numerical approach and results

Numerical results were obtained by a _nite element analysis for an axially compressed cylindrical
shell[ The geometry of the shell analysed is speci_ed by the length L\ the radius R and the wall
thickness h[ In experimental work\ Johnson et al[ "0866# found that tubes made of PVC material
were 3 ³ R:h ³ 02 collapse _rst in one concertina fold followed by a diamond pattern fold[
Stainless steel and aluminium specimens having 7 ³ R:h ³ 05 collapse in concertina failure\ while
tubes with R:h ¼ 05 collapse in a diamond failure[ Allan "0857# observes that tubes with a wall
thickness down to R:h ¼ 69 will collapse in a concertina pattern\ whereas the thinner tubes tend
to form a diamond pattern after one or more folds[

The present numerical _nite element analysis assumes that a concertina collapse mode will
dominate "see Fig[ 1#[ Here\ tubes in the region 24 ³ R:h ³ 099 are analysed[ These values of R:h
have been chosen as a compromise between the requirement of a concertina collapse mode and
satisfying the small strain theory and a large r:h ratio of the deformed shell "see later in the
discussion#[ Even though the thinnest tube would in practice only collapse in a concertina mode
for a very extreme material parameter\ the results for the thinner tubes are included here only as a
parameter study[

The shell is discretised in the axial direction\ where the displacement increments in an element
are approximated by Hermitian cubics in each element[ The integration in the axial direction is
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Fig[ 1[ Saw!cut through an axisymmetric collapsed thickwalled aluminium shell with R:h � 03[

performed by a three!point Gauss integration scheme\ while the integration at each Gauss inte!
gration point in the thickness direction "U2# is performed by a seven!point Simpson integration[
The axisymmetric analysis is performed by _xing the displacement v1 � 9 and the gradients
1vi:1U1 � 9[ A linear Euler integration over the time increment Dt is used to update the stress
tensor sab\ the inelastic strain oP

e in the Gauss and Simpson integration points and the displacements
of the nodes[ The numerical scheme used is similar to that used by Tvergaard "0872a# and
Mikkelsen "0882#[

The buckling behaviour can be initiated by deformations resulting from the boundary conditions
or by an initial localised imperfection "Tvergaard\ 0872a ^ Mikkelsen\ 0884#[ In the present paper\
both a geometrically perfect shell with a clamped edge and a shell with an initially localised
imperfection are analysed[ In the latter case\ the localised imperfection is given as

v¹2 � j¹h e−3b"U0:L−0#1
sin

pU0

lc
"13#

The parameter b speci_es the degree of localisation and j¹ the amplitude of the imperfection[ The
length lc denotes the critical half!wave length for the corresponding time!independent case "m :
9# "Tvergaard\ 0872 ^ Mikkelsen\ 0884#[ For the shell with an initial localised imperfection\ the
boundary conditions at both ends of the shell are assumed to be symmetric\ while the clamped
shell is clamped at the edge U0 � L[ In all the numerical examples\ the parameter b is chosen to
be b � 44\ which corresponds to an initially strongly localised imperfection with an imperfection
amplitude below j¹:099 when =L−U0= ³ 9[03L[

For a su.ciently small initial imperfection and a su.ciently thick!walled shell\ the collapse
behaviour will normally be initiated by boundary e}ects[ In Fig[ 2\ a clamped initially geometrically
perfect shell\ with a radius:thickness ratio R:h � 099\ is analysed[ The elasticÐviscoplastic material



L[P[ Mikkelsen : International Journal of Solids and Structures 25 "0888# 532Ð557 542

Fig[ 2[ Axial load vs shortening for a geometrically perfect clamped viscoplastic cylindrical shell with R:h � 099\
s9:E � 9[990\ n � 09\ n � 9[2\ m � 9[94\ L � 04lc and o¾L � o¾9[ "aÐc# Formation of the _rst collapse fold[ "d# Collapse
mechanism when the compressed length is equal to 14) of the initial length[

is speci_ed by a reference stress s9:E � 9[990\ a strain hardening exponent n � 09\ Poisson|s ratio
n � 9[2\ and the rate!hardening exponent m � 9[94[ The length of the shell is L � 04lc\ where the
critical half!wave length for the corresponding time!independent case is lc � 9[08R\ with the
corresponding critical stress scp � 0[27s9 "axisymmetric plastic bifurcation load#[ The load
lcp � 1phRscp is used to normalise the axial load in the load vs[ shortening curve[ In Fig[ 2\ the
average shortening strain rate o¾L � DþL:L is prescribed to be equal to the reference strain rate
o¾L � o¾9[ Figure 2"aÐd# show the deformed wall of the upper part of the cylindrical shell at four
di}erent stages of deformation[ The dots denote the _nite element nodes on the middle surface\
while the shell surfaces "solid curves# are evaluated from the deformed middle surface base vector
a2[

The local maxima and minima on the load vs shortening curve occur as a result of the progressive
development of new outward and inward buckles[ The load minima is reached when the collapse
fold is fully developed just before new contact develops between the shell walls[ The load peak for
the initial buckling behaviour "lmax � 0[90lcp# is reached at a very early stage of deformation[ At
this stage\ some axisymmetric buckles with small amplitude have just started to develop near the
clamped boundary\ see e[g[ Mikkelsen "0884#[ The half!wave length li of these buckles di}ers only
slightly from the half!wave length for the corresponding time!independent case "li � 9[85lc#[ After
reaching the load peak for the _rst buckle\ the load carrying capacity of the shell drops drastically
to only 09) of lcp[ At this point\ the _rst outward fold is fully developed and contact between the
shell walls has occurred "see Fig[ 2"a#\ which corresponds to point a on the load vs[ shortening
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curve#[ The following inward collapse fold develops through combined sliding and deformation of
the shell walls between point b "Fig[ 2"b## and point c "Fig[ 2"c##[ The load peak just after point c
occurs when contact between the shell walls and the clamped edge occurs[

After the _rst collapse fold has formed "DL:L × 9[05#\ the progressive inward and outward
folding process is nearly periodic[ The _nal folding pattern "Fig[ 2"d## is seen to have a tendency
to {{capsize|| towards the clamped edge for the fold away from the edge[ This may be due to the
fact that the width "i[e[ axial length of the fully developed inward fold# is slightly larger than the
width of the outward fold[ A tendency which is also seen in saw!cuts of crushed tubes "see e[g[
Grzebieta\ 0889 ^ Wierzbicki et al[\ 0881 ^ Singace et al[\ 0884 ^ Singace and Elsobky\ 0885 and also
Fig[ 1#[ This {{capsize|| tendency results in a decreasing outward contact load and a slightly
increasing inward contact load during the progressive folding[ In spite of the fact that the half!
wave length li of the initial buckling pattern is the critical half!wave length for the corresponding
time!independent case "li � 9[85lc#\ the _nal lengths of the folds di}er signi_cantly[ Excluding the
_rst developed fold near the clamped boundary\ the average length of the undeformed middle
surface for one half fold is lf � 9[53lc[ The eccentricity factor introduced by Wierzbicki et al[ "0881#
is de_ned as the ratio between the length of the middle surface of the outward fold "compared with
the unfolded tube# and the total folding length "lf#[ In Fig[ 2d\ the eccentricity factor is found to
lie between 9[48Ð9[52 in the near periodic region[ Experimental measurement\ carried out by
Singace and Elsobky "0885#\ produced an eccentricity factor between 9[59 and 9[52[ For complete!
ness\ it should be mentioned that\ in the following numerical results\ a larger range of the
eccentricity factor has been found\ i[e[ a range between 9[44Ð9[69 in the near periodic region for
the examples shown in Figs 2Ð5[

In Fig[ 3\ the shell is assumed to collapse far from the edges[ Therefore\ the clamped boundary
condition at U0 � L "the right end of the tube in Fig[ 2aÐd# is replaced by a symmetric boundary
condition and the initial buckling behaviour is now initiated by an initial localised imperfection
"13# with an imperfection amplitude given by j¹ � 9[90 and b � 44[ This corresponds to a shell of
length 1L which collapses in the middle "U0 � L#[ The material parameter and geometry of the
shell are chosen to be the same as in Fig[ 2[ While the development of the _rst fold "Fig[ 3"a## is
initiated by the initial imperfection\ the following fold "Fig[ 3"b#\ "c## will mainly be initiated by a
bulge developed due to the previously developed fold[ The average fold length in the near periodic
region\ lf � 9[52lc\ is seen to be close to the half!fold length found in Fig[ 2[ A way to measure the
ability of a shell structure to absorb energy during collapse is characterised by the mean carrying
capacity "lm# of the shells[ In the near periodic region\ the mean load during a whole number of
folds is seen to di}er only slightly between Fig[ 2 and Fig[ 3 "1Ð2)#\ while the di}erence is slightly
larger "4Ð5)# for the total structural collapse "9 ³ DL ³ 9[64L#[ Therefore\ only the development
of the _rst one of two folds is dependent on the actual boundary condition\ while the following
collapse behaviour is rather independent[ Therefore\ the collapse modes in the near periodic region
shown in Fig[ 2"d# and Fig[ 3"d# are comparable with the collapse mode found experimentally in
Fig[ 1\ even though the boundary conditions are not similar[ On the other hand\ an experimental
veri_cation of the initial collapse behaviour would also require a detailed knowledge of the shape
and amplitude of initial imperfections[

Figure 4 shows the collapse behaviour for the corresponding time!independent case "J1!~ow
theory#[ Compared with the viscoplastic shell in Fig[ 3\ the mean load lm in Fig[ 4 "both in the
near periodic region and during the full structural collapse# is found to be 8) lower[ For the time!
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Fig[ 3[ Axial load vs shortening for an initially imperfect "b � 44 and j¹ � 9[90# viscoplastic shell with R:h � 099\
s9:E � 9[990\ n � 09\ n � 9[2\ m � 9[94\ L � 04lc and o¾L � o¾9[ "aÐc# Formation of the _rst collapse fold[ "d# Collapse
mechanism at a compressed length equal to 14) of the initial length[

Fig[ 4[ Axial load vs shortening for an initially imperfect "b � 44 and j¹ � 9[90# time!independent shell with R:h � 099\
s9:E � 9[990\ n � 09\ n � 9[2\ L � 04lc[ "a# The collapse mechanism at a compressed length equal to 14) of the initial
length[
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Fig[ 5[ Axial load vs shortening curves for three initially imperfect "b � 44 and j¹ � 9[0# viscoplastic shells with a
viscoplastic material given by s9:E � 9[990\ n � 09\ n � 9[2\ m � 9[94 compressed at a rate given by o¾L � o¾9[ The radius
thickness ratio is given by "a# R:h � 099 "L � 10lc#\ "b# R:h � 49 "L � 04lc# and "c# R:h � 24 "L � 04lc#[ The deformation
state is shown at a compression equal to DL � 2R[
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independent case "compared with the viscoplastic shell\ Fig[ 3# the axial length of the collapse fold
is found to be signi_cantly shorter[ The axial length of one compressed fold is found to be Ld � 2[3h
in Fig[ 4\ compared with Ld � 2[7h in Fig[ 3 "Ld � 1[9h corresponds to a totally ~attened fold#[
The di}erence in Ld for the time!dependent and time!independent case is due to the fact that even
though the overall prescribed shortening rate in Fig[ 3 is o¾L � o¾9\ the shell material will actually be
deformed at a much higher rate than o¾L[ Only a small zone around the actually developing collapse
fold is deformed at a given point in the deformation history[ Therefore\ due to the rate!hardening
e}ects\ the collapse of the viscoplastic shell in Fig[ 3\ compared with Fig[ 4\ appears at a higher
stress level and with a consequently greater radius of curvature of the developed collapse folds[

Figure 5"aÐc# show the sensitivity of the viscoplastic collapse behaviour to the radius to thickness
ratio[ Due to the di}erent radius to thickness ratios\ the three shells following the corresponding
time!independent J1!~ow theory have di}erent critical stresses scp and critical half!wave lengths lc[
Therefore\ to make the three curves directly comparable\ the shortening is normalised with the
radius R "instead of L# and the axial load with l9 � 1phRs9 "instead of lcp � 1phRscp#[ The critical
time!independent bifurcation stresses are given by scp � 0[27s9\ scp � 0[46s9 and scp � 0[56s9 for
the three shells with R:h � 099\ R:h � 49 and R:h � 24\ respectively[ At a compression DL � 2R\
the lowest number of folds is seen for the thickest shell[ Correspondingly\ the folding length is also
seen to increase from lf � 9[01R for the shell with R:h � 099 to lf � 9[19R for the shell with
R:h � 24[ The minimum radius of curvature of the deformed middle surface r relative to the shell
thickness is also seen to be sensitive to the radius to thickness ratio[ The smallest radius of curvature
is obtained for the thickest shell[ This e}ect can be seen as a decrease in the axial length of a
deformed fold[ The axial length of a fold is found to be Ld � 2[8h\ Ld � 1[6h and Ld � 1[9h for "a#
R:h � 099\ "b# R:h � 49 and "c# R:h � 24\ respectively[ Figure 5"c# with Ld � 1[9h is seen to
correspond to a total ~attening of the compressed collapse fold with contact along the whole fold[
The ability of the shells to absorb energy is found to be highly dependent on the radius to thickness
ratio[ A comparison of the shell for R:h � 099 with the shell for R:h � 24 shows that the mean
load lm in the near periodic region\ and therefore also the energy absorption\ increases by 092)
from lm � 9[18l9 for R:h � 099 to lm � 9[48l9 for R:h � 24[ For comparison\ the critical stress
for the corresponding time!independent case increases by only 10)[

Figure 6 illustrates the sensitivity of the viscoplastic collapse behaviour to the prescribed short!
ening rate[ The rate!hardening exponent of the shell material is m � 9[94[ The shell is compressed
at two di}erent shortening rates corresponding to an average axial strain rate equal to o¾ a

L � o¾9:09
or o¾ b

L � 09o¾9\ respectively[ The increased shortening rate is found to have an insigni_cant e}ect on
the collapse pattern\ while the e}ect on the load level is signi_cant[ The maximum load carrying
capacity "initial load peak# increases by 14) and the mean load during the collapse for
9 ³ DL:L ³ 9[4 is 13) higher[ An explanation may be based directly on the viscoplastic consti!
tutive law "1#[ If the elastic part of the strain tensor is negligible\ two di}erent deformation rates
o¾ a

L and o¾ b
L will result in little di}erence between op

e = a and op
e = b and between sij:se=a and sij:se=b in any

part of the structure[ Essentially\ the same deformation pattern will develop\ the only di}erence
being that the deformation rate is higher at a higher stress level as speci_ed by sb

e :s
a
e �"o¾b

L:o¾
a
L#m[

In Fig[ 6 this corresponds to sb
e :s

a
e � 0[15[ The shell in Fig[ 6 is compressed well into the inelastic

region "scp � 0[46s9# before the initial buckling behaviour develops[ During the development of
the following collapse fold\ some parts of the structure undergo unloading[ Even though these
parts have a dominant elastic contribution in the strain tensor\ the in~uence on the deformation
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Fig[ 6[ Axial load vs shortening for an initially imperfect viscoplastic shell "b � 44 and j¹ � 9[0# with R:h � 49\
s9:E � 9[990\ n � 09\ n � 9[2\ m � 9[94 and L � 04lc\ for two di}erent compression rates\ and the corresponding collapse
mode "aÐb# at a compression equal to 49)[

pattern is insigni_cant[ Therefore\ the _nal collapse pattern is quite insensitive to the shortening
rate "Fig[ 6"a# and "b##\ while the stress level grows proportionally to the factor "o¾b

L:o¾
a
L#m[

Using the shell as a shock absorbing device\ an obvious requirement is a high energy absorption
of the shell structure during total structural collapse without any dangerously high load peaks[
Figure 7 demonstrates a method for controlling the height of the initial load peak by introducing
a large initial localised imperfection "axisymmetric bulge# into the shell structure[ Even though\
this imperfection signi_cantly lowers the energy absorption during the formulation of the _rst
fold "see also Mikkelsen\ 0884#\ the overall energy absorption during total structural collapse
"development of a larger number of folds# is almost unchanged[ Using an imperfection amplitude
j � 0[9 "Fig[ 7"b## instead of j � 9[0 "Fig[ 7"a## is seen to reduce the initial load peak by 24)
while the energy absorption of the shell during 49) compression decreases by only 6)[ Applying
an even larger imperfection j � 09 "Fig[ 7c# is seen to result in a collapse behaviour in which the
initial load peak is below the load oscillation during the structural collapse[ The di}erence in the
energy absorption for the three shells "Fig[ 7aÐc# in the near periodic regions is found to be below
1)[ A larger imperfection amplitude is seen to give a somewhat smaller number of developed
collapse folds at 49) compression[ This is due to the fact that the imperfection is prescribed by
the critical half!wave length for the corresponding time!independent case\ while the average length
of the folds developed in the near periodic region is smaller\ lf � 9[49lc[

Inertia e}ects are neglected in the presented analysis in spite of their obvious in~uence on the
load peaks of a shock absorbing device[ As shown by a dynamic analysis of a simple three!hinge\
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Fig[ 7[ Axial load vs shortening curve and the collapse mode at 49) compression for viscoplastic shells with R:h � 49\
s9:E � 9[990\ n � 09\ n � 9[2\ m � 9[94\ o¾L � o¾9 and L � 04lc[ Three shells are analysed with a localised imperfection
given by b � 44 and an imperfection amplitude of "a# j¹ � 9[0\ "b# j¹ � 0[9 and "c# j¹ � 09\ respectively[

rigid!rod model performed by Hutchinson and Budiansky "0855#\ the maximum load is much
increased by the e}ect of inertia when imperfections are small[ Nevertheless\ as also indicated by
this analysis of Hutchinson and Budiansky "0855#\ the importance of the inertia e}ects decreases
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Fig[ 8[ Axial load vs shortening curves for initially imperfect "b � 44 and j¹ � 9[0# shells with R:h � 49\ n � 9[2\ m � 9[94\
L � 08lc and o¾L � o¾9[ Two shells with di}erent materials are analysed "a# s9:E � 9[990 and n � 2 ^ "b# s9:E � 9[9914 and
n � 09[ The deformation states are shown at a compression equal to DL � 2R[

drastically with increasing initial imperfection[ Therefore\ the presence of a large initial imperfection
will not only reduce the static initial buckling load\ as shown above\ but will also reduce the
di}erence between the static and dynamic buckling loads[

Compared with Fig[ 5"b#\ Fig[ 8 shows the e}ect of using a shell material with a lower strain!
hardening exponent n "Fig[ 8"a## or a higher reference stress s9 "Fig[ 8"b##[ A change in the strain!
hardening exponent from n � 09 "Fig[ 5"b## to n � 2 "Fig[ 8"a## results in a 066) increase in the
mean load in the near periodic region\ from lm � 9[33l9 to lm � 0[11l9[ The critical bifurcation
stress scp for the corresponding time!independent case is correspondingly increased by 015)[ The
_nal collapse fold is highly in~uenced by the strain hardening of the shell material[ Even though the
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critical half!wave length lc for the corresponding time!independent case decreases from lc � 9[23R
"n � 09# to lc � 9[14R "n � 2#\ the _nal half!fold length is found to increase from lf � 9[06R to
lf � 9[10R[ The length of a compressed fold is correspondingly increased from Ld � 1[7h "n � 09#
to Ld � 3[1h "n � 2#[

A change in the reference stress of the shell material " from s9:E � 9[990 in Fig[ 5"b# to
s9:E � 9[9914 in Fig[ 8"b## results only in a small di}erence in the developed collapse fold[ The
critical half!wave length for the corresponding time!independent case is shortened from lc � 9[23
R "s9:E � 9[990# to lc � 9[14 R "s9:E � 9[9914#\ while the _nal collapse fold length di}ers by less
than 0) between the two cases[ The corresponding length of a compressed fold is Ld � 1[5h in
Fig[ 8"b# and Ld � 1[6h in Fig[ 5"b#[ The mean load lm in the near periodic region changes
signi_cantly from lm � 3[1 = 09−3lE "s9:E � 9[990# to lm � 8[9 = 09−3lE "s9:E � 9[9914#[ Note that
lE � 1phRE is used to normalise the mean load[ This is an increase by 003)\ which should be
compared with the corresponding 049) increase in the reference stress s9 and the 001) increase
in scp[

5[ Comparison with analytical approaches

For time!independent material behaviour it is possible to derive a simpli_ed collapse approach
by neglecting the elastic strain and the strain hardening "n : �#[ Alexander "0859# considers a
purely outward collapse mode in which one collapse fold is developed around three plastic hinges\
resulting in a _nal developed collapse fold with an axial length of only Ld � 1h[ The half folding
length lf and the mean carrying capacity lm is found by Alexander "0859# to be

l Al
f

R
� 0[24X

h
R

\
lAl

m

l9

� 0[23X
h
R

¦9[18
h
R

"14#

Abramowicz and Jones "0873# replace Alexanders folding mechanism by a mechanism in which
the outward fold is divided into two equal mirrored parts with the same constant curvature r[ The
axial length of a developed fold will then be Ld � h¦1r[ The half folding length and the mean
load are found by Abramowicz and Jones "0873# to be

l AJ
f

R
� 0[13X

h
R

\
lm

l9

�
0[069zh:R¦9[363h:R

9[75−9[39zh:R
"15#

Grzebieta "0889# modi_ed Abramowicz and Jones| outward collapse mechanisms slightly and
thereby found an estimate of the load variation during one collapse fold[ This collapse mechanism
was used by Gupta and Velmurngan "0884# in a re!examination which considered a simultaneously
developed outward and inward collapse fold[ Both approaches result in only one load peak during
one collapse fold\ despite the fact that development of one collapse fold will result in two load
peaks[ Wierzbicki et al[ "0881# simulate two load peaks by suggesting a collapse mechanism with
a distinct progressive inward and outward collapse behaviour[ Based on this assumption\ Singace
et al[ "0884# found



L[P[ Mikkelsen : International Journal of Solids and Structures 25 "0888# 532Ð557551

Fig[ 09[ The half folding length in the near periodic area for the analysed cylindrical shells with localised imperfection
"b � 44 and j¹ � 9[0 or j¹ � 9[90# compared with the critical half!wave length lc and the half folding length from two
approximative models l Al

f "Alexander\ 0859# and l AJ
f "Abramowicz and Jones\ 0873#[

l SER
f
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� 0[14X

h
R
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"16#

In Fig[ 09\ the folding length of the developed folds in the near periodic region "see Section 4#
is compared with the critical half!wave length lc for the corresponding time!independent case
"dashed curves# and the half folding length found by the approaches "14# and "15#[ Note that the
half folding length from "16# l SER

f ¼ l AJ
f [ The symbols "e= ¦ �= r= �# in Fig[ 09 indicate the half

folding length for the shells analysed in Figs 3Ð5 and 8\ in addition to some similar cases "initial
localised imperfection# with L � 04lc\ b � 44 and j¹ � 9[0 compressed at a rate o¾L � o¾9[ Nevertheless\
as lf is evaluated from the collapse fold in the near periodic region and is therefore rather insensitive
to the previously developed fold\ lf will be rather independent of the applied boundary condition
"clamped or as here a localised imperfection#[

From the symbols in Fig[ 09 it can be seen that the half folding length is independent of the
reference stress s9\ slightly dependent on whether the material is viscoplastic or follows time!
independent J1!~ow theory "m � 9[94 or m � 9#\ and signi_cantly dependent on the materials|
strain hardening "n � 09 or n � 2#[ The dependence of the strain hardening on the buckling
behavour is also discussed by Murray and Bilston "0881#[ The critical half!wave length for the
corresponding time!independent case "dashed curves# is found to be signi_cantly larger for all the
shells analysed[ Furthermore\ the sensitivities of the critical half!wave length lc and that of resulting
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Fig[ 00[ The mean load in the near periodic region during total structural collapse for di}erent shells compared with
approximative mean loads from Alexander "0859#\ Abramowicz and Jones "0873# and Singace et al[ "0884#[

folding length lf to the reference stress s9 and strain!hardening exponent n di}er[ The variation of
lc and lf with the radius to thickness ratio of the shells is seen to be in good agreement[

The results "solid curves# for the _nal half!fold length l Al
f "Alexander\ 0859#\ l AJ

f "Abramowicz
and Jones\ 0873# and l SER

f "l SER
f ¼ l AJ

f # "Singace et al[\ 0884# are found to be in reasonable
agreement with the half!fold length found in the numerical analyses[ Note that these approaches
cannot predict the e}ect of a changed material parameter "s9\ m or n# on the half folding length
"l AL

f \ l AJ
f \ l SER

f #[ This is due to the fact that these approaches neglect the in~uence of the elastic
strain\ the rate hardening "m : 9# and strain hardening "n : �# on the collapse mode[

The ability of the approaches "14#Ð"16# to predict the mean load lm in the near periodic region
of the shells analysed numerically is presented in Fig[ 00[ All these approaches are seen to
underestimate the mean load signi_cantly[ One reason for this is that the plastic deformation of a
hardening material "strain hardening or rate!dependence# occurs at a higher stress level than the
reference stress s9[

It has been suggested that the hardening e}ect of the material be incorporated in the analytical
approaches by replacing the reference stress s9 by another more representative stress[ Abramowicz
and Jones "0873#\ Grzebieta "0889# and Gupta and Velmurugen "0884# suggest using the ultimate
tensile strength as the representative stress\ while Wierzbicki "0881# suggests using a stress level
corresponding to a strain equal to the average hoop strain[ The average hoop strain is estimated
from the assumed shape of the collapse fold[ Abramowicz and Jones "0873# also used the hoop
strain to estimate the average strain rate at which the deformation occurs[ This average strain rate
is used to estimate the e}ects of the rate!hardening on the stress level and thereby on the rep!
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resentative stress[ Note that neither of the above suggestions have any in~uence on the half!fold
length lf or the shape of the folds[

6[ Discussion

The numerical analysis presented\ is based on a _nite rotation shell theory that accounts for
arbitrarily large rotations and de~ections of the shell walls[ Nevertheless\ a small strain theory is
assumed to be su.cient for the cases analysed\ in spite of the obviously large hoop strains at the
outward middle surface of the developed folds[ For the shells analysed in Section 5\ the maximum
loop strain is up to ohoop ¼ 9[95 for R:h � 099 and up to ohoop ¼ 9[02 for R:h � 24[ Rather large
strains will also occur away from the middle surface in a small region at the peak of the collapse
folds because the folds contain regions with a small radius of curvature of the deformed middle
surface r compared with the thickness h of the shell[ For r � 4h\ the strain on the shell surface will
be 09)[ In addition\ when the curvature becomes so large that r:h approaches unity\ other _nite
strain e}ects set in that are not accounted for in shell theory\ as has been explained by Triantafyllidis
et al[ "0871#[ The breakdown of the shell theory is most signi_cant for the deformed pattern of the
thick!walled shell analysed in Fig[ 5"c#\ where the surface of the shell is no longer well de_ned by
the middle surface and its normal[ For the present model\ the breakdown of the shell theory in the
_nal stage of each folding results in the prediction of a penetration of the shell surface into itself
on the inside of each fold[ The reason why the analysis is still considered su.ciently accurate is
that both the large strains and the small radius of curvature appear late during the formation of
each fold\ just before contact[ Therefore\ a more precise _nite strain description would have little
in~uence on the energy absorption calculated and on the deformation pattern of the shell[

The ability of the numerical _nite element analysis to model the total structural collapse of a
thick!walled shell "concertina collapse mode# has been demonstrated[ Both with respect to the
initial buckling mode "initial load peak#\ the following formation of a collapse fold near the
boundary\ and the progressive near periodic and boundary!insensitive collapse folds[ The devel!
opment of one collapse fold is shown to give two load peaks on the load vs[ shortening curve due
to the progressive inward and outward buckling[

7[ Conclusion

Numerical analyses have been carried out for the axisymmetric collapse of circular cylindrical
shells under axial compression[ These quasi!static analyses are based on full non!linear shell theory
accounting for arbitrarily large rotations of the shell wall[ To describe contact between shell walls
as the shell folds up\ it has been necessary to formulate a contact algorithm[ The computations
have been used to obtain a parametric understanding of the e}ect of di}erent shell geometries and
material descriptions\ see Table 0[

The full numerical analysis allows for a detailed study of the e}ects of strain hardening[ It is
found that strain hardening increases the stress level and the energy absorption\ as expected[ In
addition\ strain hardening also changes the number and width of the folds[

The material behaviour is described by either time!dependent elasto!viscoplasticity or time!
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Table 0
Cases for the dependence of the collapse behaviour on a change in the material and geometrical parameters[ The cases
are analysed in the _gure numbers shown in the brackets

Resulting changbe ")# of ]

Half folding Axial length
Load peak Mean load length of one fold
lmax:l9 lml9 lf:R Ld:R

Change of ] ")# ")# ")# ")#

Radius thickness ratio
from R:h � 099 "Fig[ 5"a## 06 092 51 −38
to R:h � 24 "Fig[ 5"c## "80 : 001#a "39 : 53#b

Strain hardening exponent
from n � 09 "Fig[ 5"b## 84 066 13 49
to n � 2 "Fig[ 8"a## "047 : 074#a "12 : 14#c

Rate hardening exponent
from m � 9[94 "Fig[ 3# −6 −8 −6 −00
to m � 9 "Fig[ 4# "−03: −4#a "−6 : −4#b

Reference stress
from s9:E � 9[990 "Fig[ 5"b## −03 −03 No in~uence No in~uence
to s9:E � 9[9914 "Fig[ 8"b## "−07 : −03#a "³3#

Prescribed shortening rate
from o¾a � o¾9:09 "Fig[ 6"a## 14 13c No in~uence No in~uence
to o¾a � 09o¾9 "Fig[ 6"b##

Initial localized imperfection
from j¹ � 9[0 "Fig[ 7"a## −24 No in~uence No in~uence No in~uence
to j¹ � 0[9 "Fig[ 7"b## "³1#

a For the cases in Fig[ 00[
b For the cases in Fig[ 09[
c Including initial buckling[

independent J1!~ow theory[ For the time!dependent material\ an increased deformation rate is
found to give a higher stress level and a higher energy absorption for the shell[ On the other hand\
no changes are found in the corresponding collapse mode "number and width of folds\ etc[#[ When
di}erent levels of strain!rate hardening are compared\ including the limit of the time!independent
case\ the viscoplastic material description is observed to in~uence both the stress level\ the energy
absorption and the collapse mode[

Furthermore\ a possibility to decrease the initial load peak and thereby increase the usefulness
of the shell as a shock!absorbing device is demonstrated[ This is done without any notable change
in the energy absorption of the shells by incorporating a large localised initial imperfection[
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Appendix ] incremental variables

The kinematic variable in incremental form is given by Ding "0878# and Basžar and Ding "0889#[
Variable which is linear in vi is given as

f¹ ab � fab¦f
¦

ab ^ f
¦

ab � v
¦

b=a−v
¦

2b�ba

f¹ b2 � fb2¦f
¦
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lb�
l
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while variable which is nonlinear is given as
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The di}erence vector in incremental form is given by
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The incremental membrane stress tensor N
¦

and the incremental moment tensor M
¦

are given by
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